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« Summarize the sequence of events operative during southern
African kimberlite intrusion

» Merge recent models on a number of apparently unrelated features




Carbonatite/kimberlites become more abundant from the Proterozoic onwards, and
remarkably more abundant from 600 Ma onwards (e.g. Janse, 1985)

Post-Pan-African peak in kimberlite volcanism occurred in the mid-Cretaceous (approx.
124-83 Ma) in southern Africa, North America, Brazil and Siberia (e.g. Janse, 1985; Haggerty, 1994)

A total of 4 main events are proposed for southern Africa (e.g. Dawson, 1986; Skinner et al., 1992))




Wolley (1989):

“...localization of carbonatitic activity over time / several
periods suggests lithospheric control”




* Increased mid-Cretaceous mantle convection (“superplumes”)

» Accelerated plate motion coinciding with the arrival of the Parana, Etendeka, Gondwana and
Ontong Java Superplumes, representing a deep-sourced heat pulse from the CMB (+*Normal’
geodynamo field orientation between 120 and 80 Ma) (e.g. Haggerty, 1989, 1994)

* Higher mean mantle Potential Temperatures, temperatures skewed towards higher values and
a greater degree of temperature variance, increased rate of global mantle convection and plate
motion (e.g. Larson, 1991; Ricciardi & Abbott, 1996)

Kimberlites erupted prior to 90 Ma (nominally Group Il types) sampled harzburgitic material
from depths between 180 and 140 km, within a 210-220 km thick lithosphere (34 mW.m2).
Post-90 Ma kimberlites sampled a highly metasomatised lithosphere, with a raised geotherm of
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* ANSOE-trending shear wave splitting (fast) polarization direction (e.g. Vinnik et al. 1995; Fouch et al. 2001)

“Central EET high”, an “arcuate saddle-like maximum (average width >> 350 km, average

magnitude >> 70 km) from northeast to southwest [which] dominates the EET map” (Doucouré & de Wit,
1998)

* Central EET high coincides with present velocity vector of the African plate, N40-45E at 14-20
mm.yr' (Online Goddard Space Flight Center, VLBI Solution KB2001 of Version 01)

* Trend coincides with the spatial (but not temporal?) Venetia-Premier-Kimberley kimberlite trend,
and NE-SW lith. extensional stress of up to 8 MPa at 125 km depth (e.g. le Roex, 1986; Doucouré & de Wit, 1998)

+ Two mutually orthogonal lattice preferred orientations pervasive throughout the Ivrea Zone
(LPO) 1) strongly plastically deformed and sheared with a high degree of deformation/recrystallization
and 2) c.g., commonly garnet-bearing, without microstructural signs of high temperature, stress or
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* The measured effective dihedral angles for basaltic melt in contact with olivine range from
20° to 50° natural melt forms an interconnected network for a wide range in melt fractions

and dihedral angle

* Increasing melt fraction and increasing grain size results in an increase in the size

and aspect ratio of melt pockets, (sub-parallel to olivine 010); occurs in hotspot conditions
(e.g. Daines & Kohlstedt, 1996)

» The melt pocket aspect ratio (long : short axis ratio) is highest at low melt fractions (0.01
to 0.02: g.v. partial melt fractions of kimberlitic/carbonatitic magmas or melt fraction required

for 50% of grain boundaries to be wetted) & higher melt fractions (>0.18) (e.g. Riley et al., 1990;
Hirth & Kohlstedt, 1995)

« Melilititic, nephelinitic, carbonatitic and kimberlitic melts are highly mobile in the upper




« At fast spreading ridges (90 mm.yr' halfrate), with olivine bulk diffusion of 3x10-"" cmZ2.s-1,
complete equilibration of grains with a 1.5 cm radius (g.v. Thaba Putsoa kimberlite mantle
xenoliths) occurs in @) 5500 years (waff & Faul, 1992)

differential stress

contains more than its minimum energy porosity, a situation that arises during the
or case

e w.r.t. CO,-H,0O fluids: the absolute necessity of to overcome the rate
of wetting equilibration i.e. “If ©>60° then the only mechanism available for fluid
penetration into non-porous rocks is hydrofracture” (watson & Brenan, 1987)
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Combination of Verncombe and Verncombe (2002) kimberlite trends with data from
a) Summerfield (1996) — continental “U-Turns”
o)) University of Austin, Texas data — spreading vector oscillations
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Development of an LPO/preferred melt orientation in the 240-140 Ma period due to consistent
spreading direction, interrupted at approximately 180 Ma (Karoo Basalt event at approx 184 Ma) by
a minor 20° spreading vector change). Approx. 220°-trending melt pockets.

Major plate spreading vector switch, to 140° at 125 Ma and a dramatic drop in spreading rate.
Imposition of a new shearing direction (0,?) at a high angle to existing fabric. Rapid re-
establishment of a stable effective dihedral angle and extremely rapid (“catastrophic”?) propagation
of suitably oriented crustal structures into the upper mantle. Initiation of carbonatite intrusion in
southern Africa at approximately 139 Ma, the start of the Mid-Cretaceous peak, Group Il kimberlite
activity and the sampling of thick, harzburgite-rich lithosphere with 34 mW.m-2 geotherm.




The intrusion of kimberlites into various structures in the Kaapvaal Craton should perhaps be
viewed as the result of their from the mantle in areas that contain a
ready source of kimberlitic or other low-viscosity fluids, rather than an “active” event whereby
extremely small volumes of “intruding” kimberlitc magma are able to “overcome” the
strengths and stresses of the Kaapvaal Craton




